
A Delay Tolerant Networking-based Approach to a High
Data Rate Architecture for Spacecraft

Alan Hylton
NASA Glenn Research Center

21000 Brookpark Rd.
Cleveland, OH 44140

alan.g.hylton@nasa.gov

Daniel Raible
NASA Glenn Research Center

21000 Brookpark Rd.
Cleveland, OH 44140

daniel.e.raible@nasa.gov

Gilbert Clark
NASA Glenn Research Center

21000 Brookpark Rd.
Cleveland, OH 44140

gilbert.j.clark@nasa.gov

Abstract—Historically, it has been the case that SWaP placed
such severe constraints on radios that the links between space-
craft and the ground were relatively slow. This meant that the
radio link was normally a significant bottleneck in returning
scientific data. Over recent years, however, a combination of
more efficient radio design, intelligent waveforms, and highly
directed, high-frequency RF / optical systems have led to a rapid
increase in the amount of data that can be pushed through radio
and optical links. This has led to some cases where the radio
links are capable of moving data much more quickly than the
spacecraft and instruments are capable of actually generating
it! In some instances, scientific data can therefore be lost not
because the downlink is too slow to support the data rate, but
instead because the spacecraft was not designed in a way that
would let it fully utilize both the radio and the networking
services available to it.

The High Data Rate Architecture (HiDRA) project describes a
packet-based approach to building modern, distributed space-
craft systems. It presents a means for spacecraft and other
assets to participate in both present and future Delay Tolerant
Networks (DTN), while simultaneously ensuring that the asset
is able to fully utilize the new, high-speed links that have been
seeing more widespread development and deployment in recent
years. With this in mind, this paper begins with a discussion
regarding HiDRA’s evolution. Next, it discusses the capabilities
and limitations of NASA’s present DTN-enabled networks. Of
particular note is the way in which principles of network design
at the terrestrial level (e.g. use of programmable networks /
software-defined networks, separation between data and control
plane, infusion of COTS Ethernet switch chips, etc.) can all
be translated into the space environment as well. After this,
the paper discusses the design and implementation of a present
prototype reference implementation of High-Rate DTN (HDTN),
which is intended to demonstrate future high-rate networking
concepts as part of a coherent demonstration on the Interna-
tional Space Station (ISS). The goal, of both the research and of
this implementation, is to help develop a ready-made toolbox of
ideas, approaches, and examples from which mission designers
can draw when putting together new missions. Assuming all
goes as planned, this should not only work to reduce the cost
of individual mission design, but also improve the rate at which
science data can be returned for mission participants to review.

TABLE OF CONTENTS

1. INTRODUCTION . 1
2. MAKING DELAY / DISRUPTION TOLERANT

NETWORKS . 3
3. HDTN APPROACH . 5
4. PLATFORMS . 7
5. INTERNATIONAL SPACE STATION 8
6. CONCLUSION . 8
REFERENCES . 9

1. INTRODUCTION
Historically, the volume of scientific data returned from space
missions has been largely constrained by the capabilities of
the mission’s communication system. Such communication
systems are generally constrained by three things: size, weight,
and power (SWaP). As technology has improved, however,
there have been incremental (albeit marked) improvements to
each of the individual S, W, and P areas of radio performance.
For example, amplifier and front-end design has advanced to
allow one to run radios at higher power without increasing
the associated size, weight, and power (SWaP) of the system.
Indeed, over time radio frequency (RF) based systems have
evolved to higher frequency carrier waves allowing increased
bandwidth, travelling wave tube amplifiers (TWTA) have
advanced to greater powers and efficiencies, and antenna
technology has been pushed to larger and deployable apertures
to offer an increase in signal gain. Improved antenna design
and efficiency has led to a significant increase in signal gain.
Improvements in computational architecture have led to the
development of superior waveforms while simultaneously
offering remarkable new platforms and approaches to radio
design (e.g. software-defined radio, or SDR). At the link
level, SDRs are now being employed to continually poll and
reconfigure link parameters to operate at a point of maximum
optimality.

Unfortunately, no incremental improvement to a radio system
can eliminate the fundamental requirement that, in order to
improve the performance of a link, one must eventually give it
more bandwidth. While it is possible to replace a waveform
on a spacecraft with something that can pack more data into an
equivalent number of symbols, the trade-off this process makes
is that it makes the radio link more fragile: the larger signal
to noise ratio (SNR) requirement means (significantly) more
power is required to close the link. Additionally, since signals
propagate well through space, high-power RF systems can
blanket incredibly large areas with the signals they produce:
as such, careful coordination is necessary to ensure that
one craft’s spectrum profile (center frequency, bandwidth,
power, etc) either does not put it in conflict with that of
another craft. Alternatively, in the event that crafts do share a
spectrum profile, care must be taken to ensure that all the craft
involved can treat the spectrum as a common physical medium
(e.g. through common multiple access schemes). Given the
limitations both on bandwidth and on directionality with lower-
frequency RF systems, higher frequency alternatives have been
the subject of significant research and development over many
years.

One example of such a system is the free-space optical system.
Free-space optics are at a reasonably advanced stage of devel-
opment, and have seen a number of successful deployments.
One example of such a deployment was the Lunar Laser
Communications Demo (LLCD) [1]. LLCD was successful in

1

https://ntrs.nasa.gov/search.jsp?R=20190001560 2020-05-10T05:23:36+00:00Z

demonstrating laser communications between the moon and
the Earth at a rate of 622 Mbps, but its deployment revealed
a fundamental issue with such high-frequency systems: the
large rates involved meant that the radio was no longer the
bottleneck in data return! In the case of LLCD, while the laser
payload could transmit data at 622Mbps, the connection to the
host spacecraft, the Lunar Atmosphere and Dust Environment
Explorer (LADEE), was constrained to 40Mbps. Thus, while
this demonstration illustrated that free-space optical could
be a viable technology, it also demonstrated a fundamental
issue with the deployment of such high-frequency systems in
the general case: it is likely that spacecraft would lack the
bus and processing capabilities necessary to source data at
such extremely high transmission rates. Thus, rather than the
radio link acting as the bottleneck for scientific data return,
the bottleneck had become the spacecraft itself.

Another case study to consider is with the International
Space Station (ISS), whose infrastructure has been and will
continue to be a constantly evolving process. From a data
source perspective the performance of imaging and remote
sensing technologies have also advanced, and in fact in certain
scenarios have outpaced standard practice communication
systems [2][3]. The ISS has enjoyed several RF systems
upgrades, and is currently adding laser communication ca-
pability. These state of the art technologies will help to realize
higher data rates, but must also interface with the existing and
aging data infrastructure, which introduces considerable rate
mismatches between the existing and emerging capabilities.
The ISS additionally presents an interesting challenge in that
it hosts a large network of experiments and sensors (data
sources), which must be routed to a variety of communication
systems. In this way it is a large multiple-in-multiple-out
(MIMO) system whose traffic must be carefully managed to
successfully route data to the correct destination at a certain
quality of service (QoS).

The next generation of space communication technologies
is currently being prepared for deployment, such as with
the upcoming NASA Laser Communications Relay Demon-
stration (LCRD). LCRD will place a laser relay terminal in
geostationary orbit (GEO) over the continental United States
[4]. The system will support several data rates up to the
Gbps regime, and feature the capability to optically link a
user satellite in Low-Earth Orbit (LEO) with a terminal on
the ground. An important aspect of the demonstration is the
Integrated LCRD LEO User Modem and Amplifier Terminal
(ILLUMA-T), which will be installed on the ISS in 2020 where
it will serve as the user terminal for the overall demonstration,
and also provide an alternative high speed path for moving
data to and from the ISS [5][6]. This capability will add to the
MIMO architecture of the ISS, which will require additional
network storage and management to utilize to its full capacity.
However, the system-wide issue discussed with LLCD, the
ISS, and LCRD remain.

To address this issue, the NASA John H. Glenn Research Cen-
ter is conducting the High Data-Rate Architecture (HiDRA)
project. HiDRA was commissioned to examine the current
bottlenecks and rate asymmetries in space data and commu-
nications systems. The goal was to allow mission designers
to, if they should choose, integrate elements of the high data
rate architecture into their own missions, allowing them to
more effectively utilize the high-rate, high-frequency links of
the future. Attaining this goal has involved a careful blend of
evangelism, infusion planning, lab testing, and commercial
development that represents an extremely active body of work.
However, the work HiDRA has taken on is not limited to

the fundamental rate mismatch between legacy spacecraft bus
systems and the capacity of future high-rate links.

Although the hardware and software particulars of the HiDRA
implementation will be application dependent, the relationship
between delay tolerant network (DTN) as a protocol (intro-
duced in Section 2), and the architecture across the CPU,
FPGA, memory and I/O elements will remain constant. The
essence of HiDRA is to create a networked buffering solution
which is general enough to provide mission scalability, with
the particular reconfigurability to enable required performance
in any particular scenario. Performance goals include target
rates of 200Gbps in support of future optical communications
payloads. The current status of the HIDRA effort is presented
here as a reference architecture under development, with
current work leading towards a technology demonstration
aboard the ISS.

Packetized Data and On-Board Switching

A fundamental design principle of HiDRA is that the ar-
chitecture must include support for both present and future
networking technologies in order to be successful in its
realization of NASA’s vision of a solar system internet. Along
these lines, one core assumption that the High Data Rate
Architecture makes is that spacecraft work with data that has
been demodulated and packetized. This is somewhat different
than the approach to signal processing commonly adopted by
existing spacecraft, where signals are considered (and routed)
signals solely in terms of their RF components. For example,
in a (notional) present-day relay, an RF signal would come
in a receiving antenna, pass through a series of RF switches,
filters, amplifiers, etc, and pass out a transmitting antenna. A
relay, as illustrate in Figure 1, would neither demodulate nor
actively process the data.

Figure 1. Basic traditional relay architecture

HiDRA, on the other hand, operates on packets as its atom.
Data enters a notional HiDRA system through a high-speed
modem, where the data is demodulated and transformed into a
packet stream. The packet stream is expected to pass through
a programmable, line-rate ASIC, which switches the traffic in
much the same way that a modern-day, terrestrial switch or
router would. In that vein, some HiDRA prototypes to date
have been built entirely on the use of COTS switching and
routing chipsets: one present area of active work involves inte-
grating COTS switch platforms (e.g. Broadcom’s Tomahawk,
Barefoot’s Tofino, etc.) into coherent, high-rate platforms that
might be capable of operating in space [7].

2

While such an effort would both reduce the cost and improve
the capability of modern space systems, there are a few chal-
lenges associated with pursuing this path. One such challenge
involves taking the existing architectures and adapting them
to operate in space environments. This practice tends to be
somewhat arcane, and also tends to incur significant expense
due to the substantial NRE involved. While this challenge
is a substantial one in the longer-term (and will need to be
addressed), in the shorter-term we hope that such solutions
could be infused into elements that might be less sensitive to
radiation (e.g. assets in low-earth orbit, or LEO).

Another challenge that is presented when trying to adapt
COTS devices to spacecraft buses involves the idea that the
protocols used by space assets are often rather different than
the protocols used by terrestrial devices. While modern space-
centric protocol standards do include provisions to operate
over, for example, Ethernet and the Internet Protocol (IP),
there is some layer of glue required to make the systems talk
to one another. While in many cases the glue can be relatively
direct (e.g. running a Consultative Committee for Space Data
Systems (CCSDS) framing layer directly over IP), significant
issues can arise in cases where assumptions for space-centric
networks differ from the assumptions made in Earth-centric
networks.

2. MAKING DELAY / DISRUPTION TOLERANT
NETWORKS

What is a DTN?

Figure 2. Typical DTN depiction

One such assumption is the idea that an end-to-end path is
expected to exist between any given source and any given
destination at every point in time. From a mathematical per-
spective, terrestrial connectivity is generally represented as a
connected graph, where routing between different sources and
destinations often occurs by applying path-finding algorithms
to a mathematical model of the network through which data
must flow.

Space systems operate differently. For example, assume that
there are three assets in space: a source, a relay, and a sink.
Assume that the relay is in orbit around a body, and (due to
the position of other interfering elements) the relay cannot talk
to the source and the sink at the same time. This means that,

in order for the source to communicate with the sink, it must
pass data to the relay, which in turn must store it and later
forward it to the sink. From a mathematical perspective, the
major difference is that the network model involves a temporal
component than is not usually required when modeling a
terrestrial network.

The assumptions of connectivity and latency are illustrated in
Figure 2. In particular, we see the variance within the single
network. There are GEO assets whose connections to the Earth
are essentially static, whereas their connections to LEO assets
(say, the ISS), change several times per hour. We also see
latencies that admit closed-loop protocols, such as Earth-LEO,
and interplanetary communications that will have one-way
light times in the minutes.

Another assumption upon which terrestrial systems are based
is that, even in the presence of extreme queuing / processing
delay and the like, latency is relatively low. A signal
can reasonably circumnavigate the planet in a few hundred
milliseconds. In most cases, one can therefore expect some
degree of real-time interaction between two peers who might
happen to be exchanging data (e.g. a client and a server). For
space systems, this may or may not be the case.

While many communication links in space systems are short
enough that real-time communication (and therefore the use
of e.g. the Transmission Control Protocol, or TCP) is an
option, there are other links where such real-time interaction
is not supported. As one example, communication with Mars
has a one-way propagation delay that is a few minutes in the
best case. Alternative protocols for these situations have been
developed and are in use (e.g. Licklider Transport Protocol
[8]).

To function given these constraints, a NASA Delay- and
Disruption-Tolerant Network will store, carry, and forward
data as appropriate. In other words, a DTN functions as a type
of abstract architecture: it describes a pattern of implementing
networks that address challenges inherent to operating in such
environments [9].

For the purposes of this paper, we assert that the following
assumptions apply to any implementation of a NASA-centric
DTN:

• Links that exist between successive hops along the data’s
path (e.g. between its source and its sink) are expected to be
constrained
• No end-to-end path need exist in order for applications and
/ or the network to function as expected
• DTN should gracefully scale to support a variety of net-
works, any of which may be fundamentally different in terms
of both capacity and scope
– Different links may involve extremely different properties,

so no single, common transport technique exists which may
apply to all links

These design objectives come with fundamental trade-offs
which affect the ease with which DTN-compatible protocols
can be processed at high rates. Notably, this is not intended as
a criticism of the architecture: instead, it simply describes a
part of the nature of the decisions that were made.

Rather than focusing exclusively on the abstract architecture
to illustrate the effect that specific decisions have had, it is
often easier to instead emphasize the way the architecture has
been realized in a representative example. For the purposes of

3

this document, the representative example of a DTN we will
be focusing on is the protocol suite described by the Bundle
Protocol [10] and related documents that may be found below.

Scaling vs. Computational Complexity

One core tenet of DTN is that of scalability: it suggests this
idea having seen the difficulties with scaling that IPv4 has
encountered over the course of a number of years. With this in
mind, BP mandates that every field in its primary header must
be encoded in a variable-length form [11]. Such fields include
the length of the bundle, the source and destination of the
bundle, and even flags that relate to the way the bundle should
be processed. Further, bundles are constructed of numerous
sub-blocks, each of which may describe a specific aspect of
the bundle (e.g. encryption, additional source information,
etc). This ensures that BP may be almost infinitely extended:
no matter how many nodes may come, no matter how many
flags may be needed, and no matter what new capabilities may
be needed, the protocol can support them without mandating
that future revisions be deployed.

This approach presents a significant challenge when building
a system that can process data at high-rates: one cannot access
a field within a bundle without first decoding every other
field that has come before. Compare the design of the Bundle
Protocol to the design of IPv4 for a moment: in IPv4, the fields
which are used to make routing decisions are always contained
at fixed offsets within the header. In the case of BP, the primary
header must be decoded in its entirety in order to know where
in the header routing information may be found. Furthermore,
once one knows where routing information is located, there
is additional decoding overhead that comes into play. In BP,
one must loop across multiple bytes and extract a value 7 bits
at a time, which is not the most efficient operation to perform
on modern processors though it can still be optimized to an
extent, given that:

• one is able to bound the maximum length of an SDNV to
the register size of the machine (64-bit in most cases), and
• an operation equivalent to SSE’s lzcnt exists on the
platform in question.

On Convergence Layers as Elephant Flows

As another example of its general design, BP assumes that
no single type of transport can be utilized in all cases. As
such, BP relies on the utilization of so-called Convergence
Layers (or CLs) to push bundles to their eventual destinations.
These CLs essentially act as tunnels, forwarding bundles from
one hop to the next in the manner that best fits the link being
utilized. This abstraction offers great benefits: for example,
in the case of space links where propagation delay may be
measured in hours, one may swap a closed-loop protocol like
TCP for an open-loop protocol like LTP [8]. Unfortunately,
this decision also carries consequences when considered in
terms of the way modern networking hardware operates.

To understand these consequences, we offer some background
in the way modern network equipment tracks network data.
In most cases, network traffic can be considered to consist
of a number of logical flows, or coherent pieces of data that
consist of multiple packets. To easily track which pieces of
data are coherent, hardware computes a kind of unique ID
for that packet: in most cases for IP-based hardware, this
is a 5-tuple that consists of the protocol type, the source IP,
the destination IP, the source port, and the destination port.
Packets that share a 5-tuple are assumed to be part of the same
flow. Since flows are considered to be coherent data streams,

there is a fundamental assumption that the packets associated
with each flow should be delivered (and processed) in order.
In cases where a single, extremely large piece of coherent data
must be delivered in such a fashion, a large number of packets
will share a single 5-tuple and will need to be delivered in
order. Such a flow is commonly referred to as an elephant
flow.

Scaling network processing capability relies on the ability
to split packets across various paths. In the network case,
one is able to incrementally add more capacity by splitting
some percentage of flows off to new hardware. In the case
of a host, the idea is similar: modern network interface cards
support multiple queues, or essentially places that packets
can be delivered. Different threads of execution can be
added and assigned to specific hardware queues, allowing the
application to achieve efficient horizontal scaling. Elephant
flows, however, prevent such approaches to scaling by forcing
large numbers of packets to take a specific path through the
network and / or to be delivered to a single hardware queue on
the host.

Unfortunately, the way convergence layers function makes
them appear as individual elephant flows when routing DTN
traffic through IP networks. For example, if we assume that:

• We have a convergence layer that is built on top of either
UDP or TCP,
• We multiplex delivery of any number of bundles through
that convergence layer, and
• The convergence layer is realized as a long-lived connection
between a single DTN source node and a single DTN sink
node, then

given that BP operates at a network layer higher than that
of TCP/UDP and IP, the network hardware will not be able
to differentiate one bundle from another. Instead, from the
perspective of the network hardware, a convergence layer acts
as a single, long-lived flow that moves data between the source
node and the sink node. As we move more or fewer bundles
through the CL, we adjust the rate of that single flow but no
matter how many bundles we push through it, a CL always
remains a single flow nonetheless. With this in mind, the flow
that represents a CL will always trend toward an elephant flow
as the bundle volume increasing through that CL increases.

Additional Notes / Experimental Results

It is worthwhile to note that the above represents a synthesis
of lessons learned from various experiments to date. Most
instances of past experiments have involved the use of testbeds
capable of emulating varying degrees of both disruption and
delay.

Experiments conducted on such configurations have helped
HiDRA gain valuable operational experience with the ex-
isting implementations. During initial testing, for example,
such experiments illustrated the need for significant, locally-
managed memory to accommodate bundle storage during
outage periods.

Additionally, such experiments have documented varying
effects related to, for example, the lack of reliability checks
within bundles, varying support for fragmentation, lack of
interoperability between implementations, limitations on scala-
bility that arise due to the use of a flat address space, and issues
related to the lack of standardized discovery mechanisms in
the system [12] [13].

4

While these issues vary in terms of their individual signifi-
cance, it is important to note there is a difference between
issues that exist at an architectural level versus issues that
exist at the implementation level. This document focuses only
on a subset of elements with a clear origin in the way the
architecture was constructed, rather than focusing on issues
with the various implementations themselves.

Mapping Back to Architecture

Since both of the elements identified in this case (generalized
support and convergence layers) are described at the archi-
tecture level instead of the BP level, we can identify two
fundamental scaling challenges that we expect to be present
in the DTN architecture as a whole:

• The overhead to decode and evaluate a DTN frame is higher
than the overhead to decode and route an IP packet
– Effect: vertical scaling is less effective than it would be

otherwise
• DTN traffic flowing through a single convergence layer
cannot rely on hardware to load-balance across multiple
hardware queues on the NIC for parallel processing
– Effect: unable to determine where individual bundles stop

and start, so cannot distribute across multiple threads / cores /
etc.

Thus, the standard approaches to making networking scale
are rather difficult without first addressing the challenges
referenced above.

3. HDTN APPROACH
Why Another Implementation?

Generally speaking, Interplanetary Overlay Network (ION)
is not the only existing DTN implementation - several imple-
mentation presently exist and are either free or open-source.
Generally, each implementation is optimized for different
situations. ION, for example, has been optimized to run on
small, embedded systems. Another implementation of DTN,
called DTN2, was primarily designed to offer an experimental
and easily extensible platform for working with DTN routing
approaches. A third implementation called Postellation was
designed to be extremely simple for new users to set up and
work with, and included a discovery mechanism and quite a
bit of configuration automation. Other implementations exist,
each of which has different goals in mind.

Unfortunately, there is no such thing as a (truly) free lunch[14].
In this instance, different implementations of DTN come
with different benefits and drawbacks: for example, [15]
demonstrates that DTN2’s emphasis on extensibility comes
at the expense of performance. In the experiment described
therein, a DTN implementation called IBR-DTN was able to
read and write bundles to disk in the same amount of time it
took for DTN2 to work with the bundle in memory. Given
the overhead commonly associated with storage media, the
different design goals are illustrated as substantial differences
in the way the code behaves and performs in given situations.

There have also been approaches to building faster / high-
performance DTNs in e.g. FPGAs. Generally speaking, such
attempts have acted as direct ports of existing DTN imple-
mentations (e.g. the IONAC-Lite project [16]). Unfortunately,
the standard for BP is relatively large, involves a number of
subsystems (e.g. storage, network processing, convergence
layers, etc), and is therefore extremely complex to represent

at the level of an ASIC / FPGA. This approach also adds great
complexity to e.g. ensuring that software implementations of
DTN stay synchronized with the implementations that have
been ported to the hardware. To work around these issues
with complexity / monolithic design, HDTN is split into two
discrete components: one that handles data-plane operations,
and another that handles control-plane operations.

The data-plane component of HDTN consists of a five-stage
pipeline: an ingress stage, an unpack stage, a switch stage, a
repack stage, and an egress stage. This pipeline is illustrated
in Figure 3. There is also an optional storage stage of the
pipeline, as well as an interface that allows interaction between
the external control-plane interface and the internal switching
controller.

It is important to note that no state is actively shared between
any two states of the processing pipeline. In the event that
data must be shared between different stages of the pipeline, it
is shared as a separate message that passes through the same
pipeline as the bundle data. This avoids a number of common
issues with livelock and deadlock, but comes at the cost of
complexity and memory overhead: state must be replicated
at each stage of the pipeline, and it can take time for state to
migrate between successive stages.

HDTN Data Plane Processing Pipeline

The first stage of the HDTN pipeline is the ingress stage. In
this stage, the bundle enters the system through a supported
ingress port. One (or more) threads continually poll one (or
more) ingress ports (e.g. convergence layers, hardware queues
on a NIC, etc.) to watch for new data. Immediately upon
receiving a new bundle, the bundle is tagged with a 64-bit
hash that corresponds to the appropriate source and destination.
The bundle is then forwarded to the unpacking stage of the
pipeline.

The unpacking stage transforms the bundle into what is called
an intermediate format. The intermediate format is a format
that preserves all information associated with the bundle,
but is also not strictly compliant with relevant BP / other
specifications. This step is done to reduce computational
overhead associated with bundle processing in future stages of
the pipeline. Once this transformation has been completed, the
bundle’s meta-data and payload data is passed to the switching
stage of the pipeline.

The switch stage of the pipeline is essentially a small table.
This table matches the bundle source and destination to a table
of known sources and destinations. It also applies any QoS
rules, prioritization, and other flow control that must be applied
in order for bundle processing to proceed as required. The
switch relies on notifications from the control-plane interface
to tell it which bundle sources / destinations are active, as well
as to provide it with information with regard to how different
bundle traffic should be prioritized across various egress paths.
If a table entry exists, the switch tags the bundle with the
appropriate egress information and passes it to the fourth stage
of the pipeline: the packing stage.

In the packing stage of the pipeline, the metadata and payload
data are rebuilt into a standards-compliant frame. The packing
stage then forwards the bundle to an appropriate egress stage
as directed by the switch. This fifth egress stage of the pipeline,
writes the bundle to a convergence layer, hardware queue, etc.
as directed by the switch. At this point, the bundle leaves the
system. There are, however, a few special cases that can alter
the flow of this basic operation.

5

Figure 3. HDTN processing pipeline

Bundle Storage—In the event that the switch receives a bundle
and has no information about it, the bundle passes to a special
stage of the pipeline called storage. The storage stage of the
pipeline accepts the bundle payload data and meta-data that
the switch was unable to forward. The storage stage then adds
it to a persistent storage device, and records its existence (as
well as its source / destination tag) in an index.

Every so often, an external control interface will provide
a contact schedule, QoS information on how existing data
should be dispatched (e.g. if stored data should only be sent
after all new data has been sent, etc), and data rates for each
anticipated contact. Storage will monitor both this schedule
and the current time as recorded by the system. When the
storage believes that the time has come to begin releasing
stored data, it will add an entry to the switch’s table to indicate
that an egress is available, and will then start passing indicated
data to the switch stage of the pipeline.

The switch stage, now having an associated entry in its table,
will forward data to the packing stage, which will in turn
transform it into a bundle and pass it along to the egress stage.

Custody Transfer—While custody transfer is presently a work
in progress, it does represent a special case. The present
approach will therefore be discussed here, with the note that,
should issues arise, it may be subject to change. Generally,
however, both the switching and the storage stages of the
pipeline are required to handle custody.

When a bundle is received at the switching stage of the pipeline
and that bundle requires custody transfer, the switch first
examines its table. If the switch has an entry for that bundle
and the bundle can therefore be forwarded, then the switch
forwards that bundle and immediately generates a custody
response. The switch injects the custody response into itself,
and proceeds to process the custody notification as it would
any other bundle.

In the event that the switch does not have an entry for that
bundle, the bundle is forwarded to storage. When the bundle

has been successfully written to storage does the storage stage
of the pipeline generate a positive custody notification and
forward it to the switch.

Scaling / Acceleration

While substantially more complex than a monolithic design,
one of the benefits of a pipeline approach is that it lends itself
well to both incremental acceleration and to horizontal scaling
techniques. In the case that all pipeline stages are implemented
in software, for example, each stage can be executed as one
or more threads with multiple-producer, multiple-consumer
queues that are shared between them. Packets / bundles can
also be load-balanced across multiple instances of e.g. ingress,
unpacking, switch, or storage stages.

Mitigating Elephant Flows—This approach also allows one
to e.g. avoid the elephant flow problem by building egress
adapters that can build parallel convergence layers, and
internally load-balance incoming bundles in round-robin
fashion across each of them. This allows hardware to balance
incoming / outgoing packets across multiple convergence
layers, splitting the single elephant flow into multiple, much
smaller flows. The egress adapters can also determine when
and how to split the number of parallel convergence layers
it has active at any given time. While this solution is
admittedly sub-optimal (especially in the case that adding
additional convergence layer flows can have side effects), it is
a mitigation that allows for some degree of load-balancing to
occur in COTS hardware.

Additionally, such an architecture need not have every compo-
nent co-located on a common piece of hardware. Instead, the
design allows for stages to be spread across one or many
different discrete pieces of hardware - as long as the bus
connecting those pieces of hardware is capable of supporting
the aggregate ingress and egress rates expected by the system.

Facilitating Vertical Scaling—Such an approach also mitigates
challenges associated with vertical scaling by allowing for
the incremental construction of hardware-based fast paths

6

through various stages of the pipeline. Rather than forcing the
entirety of a DTN implementation to reside in a single logical
piece of hardware, it becomes possible to replace individual
stages of the pipeline with dedicated hardware accelerators
(e.g. unpacking stage, switching stage, storage stage, etc),
and to wire those accelerators together in whatever way might
make the most sense given the anticipated load on the system.

It also becomes possible to integrate COTS products into such
a system: one could, for example, implement a DTN storage
solution as a plug-in to an existing commercial Network-
Attached Storage / Storage Area Network offering. The scope
of work involved with doing so would be far better defined
than might be the case should one attempt to integrate the
same kind of solution into a more monolithic implementation
of DTN.

Disadvantages

One of the primary disadvantages of such an approach is its
complexity. Rather than utilizing a single moving part with a
rather well-defined interface, the system can rapidly scale to a
point beyond the capability of a human to easily understand
and / or manage it.

Additionally, scaling in such situations must be handled
extremely carefully: for example, in the case where there
are more stages of the pipeline than there are available cores
on a machine, the way the various stages of the pipeline are
laid out are going to have a heavy influence on the operation
of the system as a whole. On a similar note, each stage of
the pipeline will come with different processing / scaling
requirements. With this in mind, horizontal scaling normally
only shows relatively linear results when it is handled in a way
that actually distributes the load in a meaningful way.

Getting such a configuration correct takes time and tweaking,
and can be difficult without a firm grasp of how the system
works. On the plus side, however, such a system does
present an opportunity for self-optimization, assuming that the
system has been appropriately instrumented: load triggers can
spawn new processing tasks automatically, within user-defined
constraints that are related to the total resources available to the
machine. Again, however, such schemes do involve additional
complexity, and a mis-configuration of such a management
scheme can lead to edge-cases where the performance of the
system degrades in a way that is anything but graceful.

4. PLATFORMS
At the moment, HiDRA has been evaluating the pipelined,
data-plane implementation of DTN on a number of different
platforms.

Here, we take advantage of several benefits to a technology
demonstration on the ISS. Among these are the ability to use
more COTS equipment, within reason. This drives down
development costs and time, and also affords alternatives
to esoteric hardware (and hardware architectures). The
current software is being prototyped on two readily available
platforms:

• Double Shot MACCHIATObin
– CPU: Armada 8040 (ARMv8 Cortex-A72, 4 cores)
– RAM: 16GB DDR4
– NIC: Dual 10GigE, 2.5GbE, GigE
– PCIe: PCIe x4 (ver 3.0)
– Power: 36W (System)

• Xeon-D
– CPU: Xeon D-1541 (x86-64, 8 cores)
– RAM: 32GB DDR4
– NIC: Dual 10GigE, Dual
– PCIe: PCIe x16 (ver 3.0)
– Power: 45W (TDP)

Both of these options use the Mini-ITX form factor
(170mm x 170mm), and are physically compatible with our
potential ISS location. Moreover, we have also demonstrated
As such, we anticipate that one of these platforms will be very
representative of our actual payload.

Each option features one PCIe expansion slot. Presently,
trade studies are being conducted to determine if the FPGA
approach will be followed for the ISS application. Essentially,
there are three options:

1. PCIe SSD, no FPGA
2. FPGA, SATA SSDs
3. FPGA and PCIe SSD

Options 1, at first glance, is the most straightforward. There
are 8TB SSD’s with read/write rates at ≈3000MBps which are
commercially available at the time of this writing, which could
satisfy the requirements for the ISS demonstration. Many
passes worth of the data could be buffered, and by separating
the bulk storage from system storage, it is reasonable to
attempt a pure software solution for several 1Gbps links. The
issues would, however, show up past certain inflection points.
As a certain boundary, such an SSD cannot go beyond 24Gbps.
It is most likely that more restrictive bottlenecks would surface
before it got that far.

For Option 2, let’s assume that we use a standard GigE link,
even if the modem has a 1.2Gbps capability. Then in one
22 minute pass, we accumulate 165GB of data. The FPGAs
presently used have 256GB of onboard DDR4 memory. Thus,
all data from a single pass will fit on the dedicated RAM
prior to being stored on the non-volatile SSD. As SATA III
supports rates up to 6Gbps, it is reasonable to benchmark such
a system. The biggest difference between this and Option 1 is
extensibility - support for links beyond the onboard 10GigE
interface become possible.

Finally, the FPGAs in question have ports to also be a PCIe
host [17], and could be connected to, for example, an NVMe
compatible SSD directly. This increases complexity and
cost, but provides fast, bulk storage that is not on the system
bus. This type of solution will be more applicable to future
iterations where we encroach on our greater speed goals
in the 200+Gbps range. In previous HiDRA papers (e.g.,
[18]), the FPGA approach is explained in greater detail. The
relevant information includes that a functioning store, carry,
and forward prototype was created, but it was not DTN-
compliant, nor was Ethernet in hardware. The demarcation
of the software and hardware implementation sides of the
HiDRA is important to optimize the system for performance
and scalability. Certainly functions, such as routing and traffic
monitoring is best realized in software. Direct handling of the
data flow, and especially when considering the 200+Gbps rates,
is best realized in hardware, although for platforms utilizing
slower physical links the full implementation could be realized
though software. FPGAs are a natural choice for the hardware
acceleration as they offer significant throughput performance
through concurrency, and may be reconfigured to scale the
architecture across a range of space mission classes. High rate
FPGA development platforms utilizing local memory storage

7

and standard PCIe and Quad Small Form-factor Pluggable
(QSFP) interfaces offer the performance and I/O required to
address MIMO spacecraft systems utilizing emerging laser
communication technologies [17]. Such a system, when paired
with a CPU running the DTN protocol, would serve as an
onboard DTN node to provide bundle storage and services at
rates concomitant with the space network goals over the next
decade.

5. INTERNATIONAL SPACE STATION
The ISS features an Ethernet LAN, the Joint Station Lan (JSL)
[19]. The JSL connects to such Ethernet data sources, such as
the External High Definition Camera (EHDC). The EHDC, in
turn, has an internal switch connectings radios (WiFi), power
supplies, the encoder, and the camera itself. As the EHDC
provides MPEG2 movies, DTN could be used to store, carry,
and forward its data - thereby becoming an automatic outage
recorder. DTN has found a place on the ISS, and became a
service in 2016 [20]. DTN has also been integrated into the
Telescience Resource Toolkit (TReK) as a means to remotely
provide command and control to payloads aboard the ISS [21].
Not only are these projects markers of great progress, but they
also demonstrate the current scale of DTN on ISS. In [21], we
see the ISS DTN topology suggests a three-hop network. We
note that previous links are not removed with the inclusion of
optical terminals, so rather more paths become available for
data to get to the ground. Moreover, the optical ground stations
might not be geographically co-located with the RF ground
stations. Therefore, the terrestrial network (and infrastructure)
will become more complex as well.

ILLUMA-T, the upcoming optical terminal for the ISS, will
add a new data path. ILLUMA-T will use the LCRD system
to relay data; the performance data are shown in Table 1:

Data Rate Data Return per Week
Return Link 1.2Gbps 18.76Tb
Forward Link 51Mbps 0.75Tb

Table 1. ILLUMA-T performance characteristics from [22]

ILLUMA-T expects to enjoy roughly 22 minutes of contact
per orbit, which lasts 92 minutes. Per week, the expected
contact time is about 33.5 hours. Hence the best utilization of
the optical link will require buffering during times of outage.
The data rates shown in TReK are on the order of 15Mbps,
which is not entirely fair as TReK is end-to-end. However
IBR’s published performance is roughly 310MBps, and we
note that desired data rates on the ISS can go beyond those of
ILLUMA-T’s, for example, if bundles are also directed over
the Tracking and Data Relay Satellites (TDRS). Therefore,
while DTN provides a useful data and network management
solution, the system falls short of the capabilities of the links
available. Despite the relatively lower data rates, more and
more experiments are using DTN onboard the ISS, though
typically for individual data rates below 30Mbps. We note that
these numbers are all preliminary - actual rates may change
based on e.g. operational constraints.

HiDRA’s HDTN is a proposed payload for the ISS, designed
to accomodate the emerging technologies and data needs. As
a step towards the higher-rate capabilities desired, HiDRA for
the ISS will, at a minimum:

• provide a persistent data storage capacity of 2TB, and

• saturate at least two gigabit Ethernet links.

We have the goal of supporting and saturating up to 10GigE.
The ISS solution is currently undergoing trade studies to
determine if the HDTN implementation should be pure
software (with commercial off the shelf (COTS) solid state
drives (SSD’s), or if it should use a hybrid software and FPGA
approach.

6. CONCLUSION
With the increase of commercial activities in space, alone
with the additional international organizations ramping up
their respective space programs, there is a growing clash
between new and old technologies, high and low commu-
nication data rates, optical and RF systems creating an ever-
expanding heterogeneous space system. Previous research
has investigated network management of dissimilar capabil-
ities[23][24], and has taken advantage of the short round-
trip-times (RTT) characteristic of the near-Earth domain to
present workable solutions. Lunar distances and especially
deep space present a great challenge for real-time feedback
control from Earth, so these techniques and parameter tunings
are not extensible to such domains. A multi-hop multi-path
test bed was constructed to emulate the dynamic and delay-
centric space environment to stress both protocol and hardware
instantiations utilizing the ION implementation of DTN [13].
The experiments conducted revealed several deficiencies in
the effectiveness of DTN to mitigate architectural challenges,
and revealed the need for significant locally managed memory
to accommodate bundle storage during outage periods. A
high speed read and write requirement is levied upon the
memory storage devices to maintain the burst capability with
the physical layer optical links. Additional deficiencies were
notes including the lack of reliability checks within the DTN
bundle, varying support for fragmentation, lack of definition
for convergence layers, difficulty in scalability and routing
due to flat address spaces, and no standardized discovery
mechanisms [12]. The identification of these challenges
created a targeted research plan to develop solutions to evolve
the DTN protocol into a workable architecture to operate with
the emerging space communication systems. The HiDRA
project is working towards a general yet practical toolkit and
knowledge base to help usher in not the era of these new
technologies, but of the system that contains them.

HiDRA is working towards the successful migration of DTN
from a protocol to an operational implementation hinges on
the ability to transmit data in the 10-200Gbps regime to meet
the needs of current and future high speed space networks,
such as those realized by laser communications. An early and
successful experiment of the ION implementation of DTN
running over a free-space laser communications link was
conducted at the Jet Propulsion Laboratory (JPL) [25]. The
many papers inspered from this experiment, as well as IONAC-
Lite [16] have lead to not only the problem statement, but
towards a solution. A potential solution is to consider a form
of hardware acceleration for DTN through field programmable
gate arrays (FPGAs) to serve as a direct memory access
(DMA) controller, thus offloading the burden of the higher-rate
data plane traffic from the CPU control plane [26]. The hybrid
software/hardware implementation streamlines functionality
between the respective sequential and concurrent processing
elements to handle the systems tasks with which they are best
suited. Early trials of this methodology have been examined
the implications of custody transfer on the distribution of
transfers and the inclusion of Contact Graph Routing (CGR)

8

for effective link establishment [27] [28].

As a simplistic overview, the FPGA design essentially allows
software to manage memory and interfaces, loosely like a
direct memory access (DMA). The software architecture laid
out here is being designed to operate both with system storage,
and with the FPGA’s dedicated memory, which is off of the
system bus [18]. Current strides have resulted in pieces of
the HDTN software being created, and benchmarking has
begun. Preliminary tests have shown bundle generation,
processing, transmission, receiving, processing, and payload
delivery working at 10Gbps rates in software. To make HiDRA
practical, a web interface is being developed that both explores
the system view, but also the (local) network view.

REFERENCES
[1] D. M. Boroson, B. S. Robinson, D. V. Murphy, D. A.

Burianek, F. Khatri, J. M. Kovalik, Z. Sodnik, and
D. M. Cornwell, “Overview and results of the lunar
laser communication demonstration,” Proc.SPIE, vol.
8971, pp. 8971 – 8971 – 11, 2014. [Online]. Available:
https://doi.org/10.1117/12.2045508

[2] “Science - jpl’s science division: People: Simon hook,”
NASA. [Online]. Available: https://science.jpl.nasa.gov/
people/Hook/

[3] J. A. Robinson and W. L. Stefanov, “Earth science
research on the international space station,” Committee
on Earth Science and Applications from Space (CESAS)
Space Studies Board, 2016.

[4] B. Edwards, D. Israel, K. Wilson, J. Moores, and
A. Fletcher, “Overview of the laser communications relay
demonstration project,” SpaceOps 2012 Conference,
2012.

[5] “Goddard tapped to build nasa’s first integrated-
photonics modem,” NASA. [Online]. Available: https:
//gsfctechnology.gsfc.nasa.gov/Photonics.html

[6] “Nasa engineers tapped to build first integrated-
photonics modem,” NASA. [Online]. Available: https:
//www.nasa.gov/feature/goddard/2016/nasa-engineers-
tapped-to-build- rst-integrated-photonics-modem

[7] A. Hylton and D. E. Raible, “High data rate architecture
(hidra),” International Communications Satellite Systems
Conferences (ICSSC), Oct 2016. [Online]. Available:
https://doi.org/10.2514/6.2016-5756

[8] M. Ramadas, S. Burleigh, and S. Farrell, “RFC 5326,
Licklider Transmission Protocol - Specification,” IETF
Network Working Group, 2008. [Online]. Available:
https://tools.ietf.org/html/rfc5326

[9] V. Cerf, S. Burleigh, A. Hooke, L. Torgerson,
R. Durst, K. Scott, K. Fall, and H. Weiss, “RFC
4838, Delay-Tolerant Networking Architecture,” IETF
Network Working Group, 2007. [Online]. Available:
https://tools.ietf.org/html/rfc4838

[10] K. Scott and S. Burleigh, “RFC 5050, Bundle Protocol
Specification,” IETF Network Working Group, 2007.
[Online]. Available: https://tools.ietf.org/html/rfc5050

[11] W. Eddy and E. Davies, “RFC 6256, Using Self-
Delimiting Numeric Values in Protocols,” Internet
Research Task Force (IRTF), 2011. [Online]. Available:
https://tools.ietf.org/html/rfc6256

[12] A. Hylton and D. E. Raible, “Networked operations
of hybrid radio optical communications satellites,”

AIAA SPACE Forum, Aug 2014. [Online]. Available:
https://doi.org/10.2514/6.2014-4440

[13] D. Raible and A. Hylton, “Integrated rf/optical
interplanetary networking preliminary explorations
and empirical results,” International Communications
Satellite Systems Conferences (ICSSC), Sep 2012, 0.
[Online]. Available: https://doi.org/10.2514/6.2012-
15126

[14] D. H. Wolpert and W. G. Macready, “No free lunch
theorems for optimization,” IEEE TRANSACTIONS ON
EVOLUTIONARY COMPUTATION, vol. 1, no. 1, pp.
67–82, 1997.

[15] S. Schildt, J. Morgenroth, W.-B. Pöttner, and
L. Wolf, “Ibr-dtn: A lightweight, modular and highly
portable bundle protocol implementation,” Electronic
Communications of the EASST, vol. 37, 2011. [Online].
Available: https://journal.ub.tu-berlin.de/eceasst/article/
view/512/544

[16] L. Torgerson, “Ionac-lite - a combination of energy
and performance optimization is attained for high-speed
delay tolerant networking,” 2011. [Online]. Avail-
able: https://www.techbriefs.com/component/content/
article/tb/techbriefs/electronics-and-computers/10723

[17] “Bittware.com/xilinx — xusp3r.” [Online]. Available:
http://www.bittware.com/xilinx/product/xusp3r/

[18] A. Hylton, D. E. Raible, and G. Clark, “On
the development and application of high data
rate architecture (hidra) in future space networks,”
International Communications Satellite Systems
Conferences (ICSSC), Oct 2017. [Online]. Available:
https://doi.org/10.2514/6.2017-5415

[19] V. Studer, “International space station (iss) external high
definition camera assembly (ehdca),” 2014. [Online].
Available: https://www.nasa.gov/sites/default/files/files/
V Studer-External High Definition Camera.pdf

[20] “Disruption tolerant networking - reliable solar system
internet connection,” NASA, 2018. [Online]. Available:
https://www.nasa.gov/content/dtn

[21] A. Schlesinger, B. M. Willman, L. Pitts, S. R. David-
son, and W. A. Pohlchuck, “Delay/disruption tolerant
networking for the international space station (iss),” pp.
1–14, March 2017.

[22] A. Seas, Z. Gonnsen, and T. Yarnall, “Illuma-t
(integrated lcrd leo user modem and amplifier terminal)
payload,” 2018. [Online]. Available: https://ntrs.nasa.
gov/archive/nasa/casi.ntrs.nasa.gov/20180002846.pdf

[23] V. W. S. Chan, “Optical satellite networks,” Journal
of Lightwave Technology, vol. 21, no. 11, p. 2811,
Nov 2003. [Online]. Available: http://jlt.osa.org/abstract.
cfm?URI=jlt-21-11-2811

[24] P. Clark and A. Sengers, “Wireless optical networking
challenges and solutions,” Military Communications
Conference.

[25] J. Schoolcraft and K. Wilson, “Experimental characteri-
zation of space optical communications with disruption-
tolerant network protocols,” 2011 International Con-
ference on Space Optical Systems and Applications
(ICSOS), pp. 248–252, May 2011.

[26] M. N. Ellanti, S. S. Gorshe, L. G. Raman, and W. D.
Grover, Next Generation Transport Networks: Data,
Management, and Control Planes. Berlin, Heidelberg:
Springer-Verlag, 2005.

9

https://doi.org/10.1117/12.2045508
https://science.jpl.nasa.gov/people/Hook/
https://science.jpl.nasa.gov/people/Hook/
https://gsfctechnology.gsfc.nasa.gov/Photonics.html
https://gsfctechnology.gsfc.nasa.gov/Photonics.html
https://www.nasa.gov/feature/goddard/2016/nasa-engineers-tapped-to-build-_rst-integrated-photonics-modem
https://www.nasa.gov/feature/goddard/2016/nasa-engineers-tapped-to-build-_rst-integrated-photonics-modem
https://www.nasa.gov/feature/goddard/2016/nasa-engineers-tapped-to-build-_rst-integrated-photonics-modem
https://doi.org/10.2514/6.2016-5756
https://tools.ietf.org/html/rfc5326
https://tools.ietf.org/html/rfc4838
https://tools.ietf.org/html/rfc5050
https://tools.ietf.org/html/rfc6256
https://doi.org/10.2514/6.2014-4440
https://doi.org/10.2514/6.2012-15126
https://doi.org/10.2514/6.2012-15126
https://journal.ub.tu-berlin.de/eceasst/article/view/512/544
https://journal.ub.tu-berlin.de/eceasst/article/view/512/544
https://www.techbriefs.com/component/content/article/tb/techbriefs/electronics-and-computers/10723
https://www.techbriefs.com/component/content/article/tb/techbriefs/electronics-and-computers/10723
http://www.bittware.com/xilinx/product/xusp3r/
https://doi.org/10.2514/6.2017-5415
https://www.nasa.gov/sites/default/files/files/V_Studer-External_High_Definition_Camera.pdf
https://www.nasa.gov/sites/default/files/files/V_Studer-External_High_Definition_Camera.pdf
https://www.nasa.gov/content/dtn
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20180002846.pdf
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20180002846.pdf
http://jlt.osa.org/abstract.cfm?URI=jlt-21-11-2811
http://jlt.osa.org/abstract.cfm?URI=jlt-21-11-2811

[27] A. Hylton, D. Raible, J. Juergens, and D. Iannicca, “On
applications of disruption tolerant networking to optical
networking in space,” International Communications
Satellite Systems Conferences (ICSSC), Sep 2012.
[Online]. Available: https://doi.org/10.2514/6.2012-
15228

[28] G. Araniti, N. Bezirgiannidis, E. Birrane, I. Bisio,
S. Burleigh, C. Caini, M. Feldmann, M. Marchese,
J. Segui, and K. Suzuki, “Contact graph routing in dtn
space networks: overview, enhancements and perfor-
mance,” IEEE Communications Magazine, vol. 53, no. 3,
pp. 38–46, March 2015.

10

https://doi.org/10.2514/6.2012-15228
https://doi.org/10.2514/6.2012-15228

	Introduction
	Making Delay / Disruption Tolerant Networks
	HDTN Approach
	Platforms
	International Space Station
	Conclusion
	References

